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Abstract

Shape changes occurring in spheroidal and rectangular solid grains were theoretically investigated on the basis of the free energy

theory for material transport. It was assumed that material transport in a non-equilibrium system was driven by excess free energy
so that the system becomes an equilibrium state. The rate equation for material transport of solid in a non-equilibrium state was
derived from this assumption. Using the equation, rates of shape changes for spheroidal and rectangular grains were formulated.
From the rate equations, shape changes toward equilibrium shapes were simulated. It was found that elongated grains change their

shapes more rapidly than nearly round and cubic grains.
# 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Very fine ceramic powders are important raw materi-
als in industry.1,2 They are sintered at high temperature,
and are supplied as many suitable industrial parts. The
grains in these powders usually have irregular shapes. If
such grains are heat-treated at high temperature, and
are extremely fine, they will change their shape toward
an equilibrium shape. When the grain is isotropic, it will
become a sphere, and when the grain is of a cubic crys-
tallographic system, it will become a cube. During the
shape changes, the free energy associated with surface
area decreases until the grains become a sphere or a
cube. Grains with irregular shapes have more surface
energy than an equilibrium state. It is thus considered
that the excess free energy stored on the grain surface is
the driving force for material transport for shape
change.

The same phenomenon happens in sintering and grain
growth of metal and ceramic powders. When powder is
sintered at high temperature, grains join together, losing
surface area and creating a grain boundary.3�5 During
this process, the sum of surface energy and grain
boundary energy in the powder must decrease. This
means that the powder has excess free energy and that
sintering and grain growth proceed in the direction that
total free energy decreases. When polycrystalline mate-
rial is heated at high temperature, grain growth will take
place. Grains larger than the average size grow and the
smaller grains shrink.3,6 The total grain boundary
energy in a polycrystalline solid must decrease. It seems
that the total grain boundary energy drives grain
growth in polycrystalline material.

From these phenomena, we can consider that the driv-
ing force for material transport in sintering and grain
growth is excess free energy associated with the surface and
grain boundary. The author and Y. Inomata have been
investigating sintering and grain growth from the view-
point of the free energy theory.7�13 The theory assumed
that the excess free energy stored in a system directly
activates material transport, changing a system toward
an equilibrium state, and a rate equation for material
transport was proposed. From this theory, sintering and
grain growth have been successfully analyzed.

The purpose of this work is to apply this theory to the
simple case of shape change of small elongated grains.
In this paper, first we discuss derivation of the rate
equation for diffusion material transport from the free
energy theory. Second we apply the rate equation to
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shape changes of spheroidal and rectangular solid
grains, and formulate rate equations for their shape
changes. The shape changes are simulated and discussed
from numerical calculations with the rate equations.
2. Free energy theory for material transport

If a system is in a non-equilibrium state, it has excess
free energy �G over an equilibrium state, so some rate
process will take place, and �G will decrease toward 0.
In order to analyze this process, Inomata assumed that
the rate must be in proportion to �G and a frequency of
atom jump, and proposed the following equation.13

u ¼ �0exp �
DG�

m

RT

� �
 1 � exp �

DG
RT

� �� �
; ð1Þ

where u is the rate of the process, n0 is the vibration
frequency of atom, �Gm* is the activation energy for
atom jump or migration, and R and T are the gas con-
stant and temperature, respectively.  is the measure
unit for the rate process, which is volume or mass in the
case of solid diffusion.

We consider here volume diffusion of solids. Fig. 1
shows a volume V with surface S, where dv is flowing
from a small volume dV with cross sectional area a(x)
along diffusion path lx(x) to outlet aout. am(x) is the
mean cross sectional area of diffusion from a(x) to aout,
and �G is excess free energy stored in the volume V.  
in Eq. (1) is then volume diffusing from V.  is in
proportion to the volume l0

3 carried by one atom jumping.
 is also in proportion to cross sectional area,
which is expressed as ax/l0

2 in a non-dimensional unit,
where ax is effective diffusion area.  is in inverse pro-
portion to diffusion length lx/l0, where lx is effective
diffusion length. Substituting  ¼ � l30

� �
ax=l

2
0

� �
= lx=l0ð Þ in
to Eq. (1), the material transport rate by diffusion dv/dt
is written by Eq. (2).

dv

dt
¼ �l20�0exp �

DG�
m

RT

� �
ax
lx

� �
1 � exp �

DG
RT

� �� �
; ð2Þ

where � is a constant depending on the crystal
structure of the solid and the mechanism of diffusion.
The first four terms in the right hand side of Eq. (2)
are equal to the diffusion coefficient
D ¼ gl20�0exp �DG�

m=RT
� �� �

,14 and Eq. (2) reduces to the
simple form of Eq. (3).7

dv

dt
¼ D

ax
lx

� �
1 � exp �

DG
RT

� �� �
ð3Þ

(ax/lx) in Eq. (3) is the term of diffusion area and length
for the whole volume V. As volume dv emerging from
dV flows from the area a(x) through the mean cross
sectional area am(x) to the outlet area aout as shown in
Fig. 1, (ax/lx) is given by taking a harmonic average of
am(x)/l(x) over the volume V. am(x) is the mean cross
sectional area of a truncated cone with bases of a(x) and
aout. l(x) is the diffusion length from ax(x) to aout. am(x)
is calculated by taking a harmonic average of cross sec-
tional area a(x) from x to xout. (ax/lx) is then given by
the following equations.11

1

am xð Þ
¼

Ð x
xout

1

a xð Þ
dxÐ x

xout
dx

; and
1

ax
lx

� � ¼

Ð
V

1

am xð Þ

l xð Þ

� �dV

Ð
VdV

ð4Þ

From Eqs. (3) and (4), we can calculate the rate for
diffusion material transport activated by excess free
energy.

Eq. (3) is valid in a system where a material concen-
tration gradient exists. This is confirmed by derivation
of Fick’s first law from Eq. (3). In the case of a material
where a concentration gradient exists, Eq. (3) is
modified to Eq. (5),

dm

dt
¼ CAD

ax
lx

� �
1 � exp �

DG
RT

� �� �
ð5Þ

where CA is the concentration of material A and dm is
diffusing material. The chemical potential �A of material
A is:

�A ¼ �0
A þ RTlnaA ¼ �0

A þ RTlnfACA ð6Þ

where �A
0 , aA, and fA are the standard chemical poten-

tial, the activity and the activity coefficient,15 respec-
tively. �A

0 is a constant, and fA does not depend on the
concentration CA for an ideal and dilute solution. When
the small volume dV has the concentration gradient
dCA/dx, the free energy change �G by material flow in
the small volume dV is evaluated by Eq. (7).
Fig. 1. Schematic showing diffusion material transport activated by

excess free energy. Volume dv flows from a small volume dV with

crossectional area a(x) through mean crossectional area am(x) along

length lx to outlet aout. �G is excess free energy in a system having

volume V and surface S.
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DG ¼ �d�Að Þ ¼ �
RT

CA

� �
dCA ð7Þ

As (ax/lx) is equal to {a(x)/dx} in dV, substituting Eq.
(7) for �G, Eq. (5) becomes Fick’s first law as shown by
Eq. (8).

dm

dt
¼ CAD

a xð Þ

dx

� �
1 � exp

RTdCA

CA

1

RT

� �� �

� �a xð ÞD
dCA

dx

ð8Þ

The free energy theory for material transport is thus
coincident with Fick’s law. If material flows along con-
centration gradient, material transport is naturally cal-
culated by Fick’s law. On the other hand, the free
energy theory can be adopted in the case of material
transport driven by surface energy as discussed in the
next section.
3. Rate equation for shape change of spheroidal and

rectangular grains

3.1. Models and excess energy for shape change of
spheroidal and rectangular grains

We consider here simple cases of shape changes
occurring in spheroidal and rectangular solid grains.
Fig. 2 shows models for two grains which are expressed
by Eq. (9).

For spheroidal grains;

x2

r2
a

þ
y2

r2
b

þ
z2

r2
b

¼ 1; and ra > rb > 0:

For rectangular grains;

x ¼ �ra; y ¼ �rb; z ¼ �rb; and ra > rb > 0: ð9Þ

The spheroidal grain has an ellipsoidal surface of
revolution, and the rectangular grain has a parallele-
piped shape with two square bases. Both grains are
symmetric around the x-axis and elongated in the x
direction. They are not in an equilibrium state. If diffu-
sion is activated enough, they will gradually change
their shapes to equilibrium shapes keeping symmetry
around x-axis. The equilibrium shapes of spheroid and
rectangular grains are obviously a sphere and a cube,
respectively.

The surface energy of grain at the present (non-equi-
librium) state f(at present) is calculated by Eq. (10) in
units of J/mole using parameters of surface energy "s,
surface area S, grain volume V, and molar volume of
solid Vm.

 at presentð Þ ¼
"sS

V=Vmð Þ
ð10Þ

Excess free energy is given by the difference between
f(at present) and minimum surface energy f (at
equilibrium).

DG ¼ 
 at presentð Þ � 
 at equilibriumð Þ ð11Þ

The surface areas and volumes of spheroidal and

rectangular grains are 2�
h
r2
bþ

n
r2
arb= r2

a � r2
b

� �1=2
o

Arccos rb=rað Þ

i
and 4prarb

2/3, and 16rarb+8ra
2 and 8rarb

2,

respectively. At equilibrium, ra is equal to rb, and �G is
calculated by the following equations.

For spheroidal grains

DG ¼
"sVm

ra

� �
3R�2=3

a

1

2
R2=3
a 1 þ

ArccosRa

Ra 1 � R2
a

� �1=2

( )
� 1

" #
:

For rectangular grains

DG ¼
"sVm

ra

� �
3R�2=3

a

1

3
R�1=3
a 2 þ Rað Þ � 1

� �
: ð12Þ

where Ra=rb/ra (0<Ra41) is the shape factor. For
Ra<1, grains are elongated, and they become a sphere
or a cube at Ra=1.
Fig. 2. Models for (a) spheroidal grain and (b) rectangular grain. Both

grains are symmetric around the x-axis and elongate in the x direction.
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3.2. Term of diffusion area and length

While spheroidal and rectangular grains deform
toward equilibrium shapes, material transport by diffu-
sion takes place in the grains. Although the exact
diffusion path is not known, we can, however, consider
that the diffusion path is approximately the same path
through which material flows into a central plane from the
whole volume. Fig. 3 shows that volume dv flows from
volume dV1 in V1 into the plane aout. Calculation of (ax/lx)
is therefore performed on V1 and V2 using Eq. (13).

1

ax
lx

� � ¼

Ð
v1

1

am xð Þ

l xð Þ

dVþ

ð
v2

1

am xð Þ

l xð Þ

dV

Ð
VdV

ð13Þ

am(x) for spheroidal and rectangular grains is
{a(x)aout}

1/2=prb
2(1�x2/ra

2)1/2 and 4rb
2, respectively, and

lx=|x|. By carrying out the integral in Eq. (13), we get
the term of diffusion area and length (ax/lx).

For spheroidal grains

ax
lx

� �
¼ 2�raR

2
a :

For rectangular grains

ax
lx

� �
¼ 8raR

2
a : ð14Þ
3.3. Rate equations for shape change of grains

In the same way as the calculation of the term of dif-
fusion area and length, the volume required for a shape
change of a grain is considered to be equal to 2dra	aout.
Thus dv/dt is:

For spheroidal grains

dv

dt
¼

4�

3
r3
aRa

dRa

dt
:

For rectangular grains

dv

dt
¼

16

3
r3
aRa

dRa

dt
: ð15Þ

From Eqs. (3), (12), (14) and (15), we obtain the rate
equations for shape changes of spheroidal and rectan-
gular grains.

For spheroidal grains

dRa

dt
¼

3"sDVm

RT

� �
1

V

 2�R7=3

a�
1

2
R2=3
a 1 þ

ArccosRa

Ra 1 � Rað Þ
1=2

� �
� 1

�
:

For rectangular grains

dRa

dt
¼

3"sDVm

RT

� �
1

V

 12R7=3

a

1

3
R�1=3
a 2 þ Rað Þ � 1

� �
:

ð16Þ
"s, D and Vm are material constants, and the volume V
is the same in both grains. The rates of shape change
are in proportion to the surface energy "s and the dif-
fusion constant D and in inverse proportion to the
volume V.
4. Behavior of shape changes of spheroidal and

rectangular grains

4.1. Calculation of rates for shape change

The rates for shape change dRa/dt were calculated
using Eq. (16). The results are shown in Fig. 4, where
dRa/dt is normalized by the factor B=(3"sDVm/RT)/V
and plotted against Ra. The calculations were performed
from Ra=0.5–1. A small value of Ra<0.5 is not ade-
quate for the models in Fig. 2, because spheroidal and
rectangular grains get too long and narrow. In such
narrow grains, the approximation for the term of diffu-
sion area and length adopted in Section 3.2 may not be
adequate. Fig. 4 indicates that dRa/dt becomes larger as
Ra becomes smaller, that is, a long and narrow grain
Fig. 3. Volume dv diffusing in (a) spheroidal grain and (b) rectangular

grain. dv flows from small volume dV1 with crossectional area a(x)

through mean crossectional area am(x) to outlet aout. The same volume

dv also flows from V2.
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rapidly changes its shapes. The figure also shows that
dRa/dt for a rectangular grain is always larger than
that for a spherical grain.

4.2. Behavior of shape change of spheroidal and
rectangular grains

Behavior of shape change was simulated using Eq.
(16). Given that grain had a shape factor Ra(t) at time t,
R(t+dt) after a small range of time dt was obtained by
adding dt	dRa(t)/dt to Ra(t). The calculations were
repeated varying the initial shape factor Ra(0) from 0.5
to 0.9. Figs. 5 and 6 show Ra(t) as a function of the
normalized time Bt. The shape factor Ra(t) for all Ra(0)
increased rapidly from Bt=0 to Bt�10, and then it
increased very slowly toward Ra(t)=1 where the spher-
oidal and the rectangular grains are nearly a sphere and
a cube, respectively. It was found that elongated grains
changed their shapes very rapidly, while nearly round
and cubic grains changed shapes very slowly.

Comparing carefully the shape factor Ra(t) in Figs. 5
and 6, it is noticed that the rectangular grain changes its
shape a little faster than the spheroidal grain. This is in
accordance with the result that dRa/dt is always larger
for the rectangular grain than for the spheroidal grain
as shown in Fig. 4. This behavior can be understood by
considering that the surface area of a spheroidal grain is
smaller than that of a rectangular grain with the same
volume V.

It may be interesting to estimate the actual grain size
which may show rapid shape change. For this estim-
ation, we can utilize the diffusion coefficient and surface
energy data of, for instance, SiC ceramics reported in
the literature.16�18 SiC fine powder is usually sintered at
about 2000–2200 �C.19�22 Diffusion in SiC solid is acti-
vated at that temperature, so that we assume that SiC
grain may actually change its shape by heating at
2000 �C for about 1 h(=�t). This time corresponds 10
for Bt in Figs. 5 and 6, where Ra(t) rapidly decreases.
The lower diffusion species in SiC is Si, and its lattice
diffusion coefficient D is about 4.9	10�18 m2/s at
2000 �C for a pure single crystal.16 Surface energy "s is
estimated to be about 3.5 J/m2,18 and molar volume Vm
Fig. 4. Rate of shape change dRa/dt for spheroidal grain and rectan-

gular grain as a function of grain shape factor Ra, where B=(3"sDVm/

RT)/V.
Fig. 5. Shape change of spheroidal grain. Shape facter at time t Ra(t)

is plotted against non dimensional time Bt, where B is (3"sDVm/RT)/

V. The calculations were performed with changing initial grain shape

factor Ra(0), Ra(0)=0.5, 0.6, 0.7 0.8 and 0.9.
Fig. 6. Shape change of rectangular grain. Shape facter at time t Ra(t)

is plotted against non dimensional time Bt, where B is (3"sDVm/RT)/

V. The calculations were performed varying initial grain shape factors

Ra(0), Ra(0)=0.5, 0.6, 0.7, 0.8 and 0.9.
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is 1.25	10�5 m3/mole.23 From Bt=(3"sDVm/RT)(1/
V)�t using the values of "s, D, Vm, Dt and Bt, the
volume V is calculated as 1.2	10�23 m3 and ra for
spherical grain is 14 nm. We can speculate from this
result that SiC grain will change its shape toward an
equilibrium shape at 2000 �C if its grain size is in the
order of several tens of nm.

In this work we considered shape change of grains
only by the lattice diffusion mechanism. Shape
change can also take place by surface diffusion,
vaporization and condensation. For these mechan-
isms, (ax/lx) in Eq. (14) and dv/dt in Eq. (15) must
be re-calculated. It is not, however, possible to cal-
culate eq.14 by the usual analytical method. We need
some numerical simulation, which will be performed
by further work.

The estimated grain radius of 14 nm mentioned above
seems to be a little smaller than expected, because SiC
powder actually sintered if grains are sub-micron size
(>�0.5 mm). This may be due to using a lower lattice
diffusion coefficient and ignoring surface diffusion
mechanism. The diffusion coefficient used for the calcu-
lation was that of a large pure SiC crystal. The actual
diffusion coefficient for small SiC grain may be larger
because it is not pure and contains many defects and
contaminations. Both increase the diffusion coefficient
very much. Surface diffusion also transports material
very much faster than the lattice diffusion. We should
consider these factors for exact calculation of shape
changes of grains.
5. Conclusions

The free energy theory for material transport of solids
was first discussed in this article. The theory assumed
that material transport in a system was activated in
proportion to the total amount of excess free energy so
that the system became an equilibrium state. From the
theory, the rate equation for diffusion material trans-
port was derived. The material transport rate was given
by the products of the diffusion coefficient, the terms of
diffusion area and length, and the term of activation
energy.

Second, shape changes occurring in spheroidal and
rectangular grains were theoretically investigated based
on the theory. Excess surface energy was assumed to
drive shape changes of spheroidal and rectangular
grains toward equilibrium shapes of a sphere and a
cube, respectively. From this assumption the rate equa-
tions for shape changes were obtained. The shape
changes were then simulated by calculations of the
shape factor. It was found that elongated grains chan-
ged their shapes rapidly, while nearly round and cubic
grains changed shapes very slowly.
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